SYNTHESIS OF 1,3-DITELLUROLE AND DITELLUROLYLIUM CATIONS

S. L. Bender, M. R. Detty and N. F. Haley

Research Laboratories, Eastman Kodak Company, Rochester, New York 14650

Summary: 1,3-Ditellurole was synthesized and shown to oxidize to the 1,3-ditellurolylium ion, which rearranges to a 1,2-ditellurolylium ion.

Within the considerable amount of literature on the syntheses of substituted 1,3-dithioles, 1,3-dithiolylium cations, and related heterocycles there are only a

few methods for preparing the parent compounds of the series I-V. Syntheses of the 1,3-dithiolylium cation $(II)^2$ and the 1,3-diseleno analogue $(III)^3$ have appeared, but preparations of 1,3-ditellurole (IV) and the corresponding 1,3-ditellurolylium cation (V) have not been reported. We present here an efficient synthesis of IV, its oxidation to V, and evidence for a novel rearrangement of V to a 1,2-ditellurolylium cation.

Our method for preparing the parent 1,3-ditellurole (IV) and some derivatives of IV is shown in Scheme 1.

$$R-C \equiv CH \xrightarrow{BuLi} > [RC \equiv C^-Li^+] \xrightarrow{Te} > [RC \equiv C-Te^-Li^+] \xrightarrow{ICH_2C1}$$

$$\downarrow Li_2Te \\ EtoH \qquad RC \equiv C-TeCH_2C1$$

$$IVa, R = H \qquad \qquad VIa, R = (CH_3)_3Si$$

$$IVb, R = CH_3 \qquad Vib, R = CH_3$$

$$IVc, R = CH_3(CH_2)_3 \qquad Vic, R = CH_3(CH_2)_3$$

$$IVd, R = C_6H_5 \qquad Vid, R = C_6H_5$$

Scheme 1

The alkynetellurolates were readily prepared from the corresponding alkynes (all commercially available) via their lithio salts and 1 equiv of tellurium metal at 30°C in THF. Between -40 and -60°C, the alkynetellurolate slurry was treated with 1.1 equiv of iodochloromethane in THF and allowed to warm to room temperature. Dilution with 50% Et₂O/pentane, filtration through a pad of Celite, and

water extraction gave an organic layer of VI sometimes contaminated with $RC = C - TeCH_2 Te - C = CR$. Evaporation of the solvents followed by distillation or chromatography on silica gel gave pure VI.

Ring closure of VI to the 1,3-ditelluroles IVa-d required the use of dilithium telluride prepared from tellurium shot and 2 equiv of lithium triethyl borohydride (1 \underline{M} in THF, "Superhydride," Aldrich Chemical Company). After the tellurium shot was consumed, slightly more than 2 equiv (relative to Te) of 1 \underline{M} NaOEt in ethanol was added to the Li_2Te under argon. The chloromethyltellurolalkyne was dissolved in DMF (volume equal to amount of ethanol added) and added to the Li_2Te solution. The resulting mixture was stirred 16-24 h at ambient temperature and then filtered through a pad of Celite to remove Te metal. The filtrate was diluted with water, extracted with CH_2Cl_2 , dried (MgSO₄), and evaporated. The 1,3-ditelluroles were purified by recrystallization from methanol or chromatography on activity II alumina eluting with 3:1 hexane/CH₂Cl₂. Table 1 lists pertinent physical properties of IV and some derivatives prepared by the above method.

Table 1. Physical and NMR (1 H, 13 C) Spectral Properties of IV

ΙV

R	Yield, a %	mp, b °C	δC ₁ , ppmc	δC ₂ , ppm	δC ₃ ,	δH _A ,	δH _B ,
IVa H	65	83-85	120.0	120.0	-39.0	8.83	4.70
IVb CH ₃	4	53-56	112.4	136.1	-40.6	8.07	4.73
IVc CH ₃ (CH ₂) ₃	11	37.5-40	110.7	143.7	-41.9	8.10	4.65
IVd Ph	49	80.5-82.5	141.6	143.1	-20.7	8.57	4.73

alsolated yield. ball compounds gave satisfactory elemental analyses. For R = H, Calcd. for $C_3H_4Te_2$: C, 12.2; H, 1.4. Found: C, 12.2; H, 1.4. For R = CH_3 , Calcd. for $C_4H_6Te_2$: C, 15.5; H, 2.0. Found: C, 15.4; H, 2.0. For R = $CH_3(CH_2)_3$, Calcd. for $C_7H_{12}Te_2$; C, 23.9; H, 3.4. Found: C, 24.0; H, 3.4. For R = Ph, Calcd. for $C_9H_8Te_2$: C, 29.2; H, 2.2; Te, 68.9. Found: C, 29.0; H, 2.2; Te, 69.0. CCDCl₃ as solvent.

Treatment of 1,3-ditellurole (IVa) in acetonitrile at -30°C with 1 equiv of triphenylcarbenium (trityl) tetrafluoroborate gave a dark-purple solution. Examination of the reaction mixture by $^{1}{\rm H}$ NMR at ambient temperature in CD₃CN showed the

presence of a 1,3-ditellurolylium salt: a two-proton doublet at 11.81 δ , J = 1.2 Hz, and a one-proton triplet at 15.0 δ , J = 1.2 Hz. The unusual downfield shifts are notable but expected from the trend set by compounds II and III (11.3 δ and 13.4 δ , respectively, for the 2H-proton). Apparently, substitution of tellurium for selenium or sulfur as in IV places a higher degree of positive charge on the 2 carbon atom, resulting in a remarkable downfield shift of 4 ppm relative to sulfur.

However, the spectrum quickly changed at ambient probe temperature ($\sim 30^{\circ}$ C), being replaced by another two-proton doublet at 13.8 δ , J = 6.9 Hz, and a one-proton triplet at 10.3 δ , J = 6.9 Hz. Note that the latter doublet is now downfield of the triplet absorption; also, the coupling constants have increased. Similar treatment of IVb-d with trityl tetrafluoroborate gave spectra consistent only with this final product (see Table 3); no intermediate 1,3-ditellurolyliums were detected. Finally, the above spectrum disappeared upon precipitation of tellurium metal.

We explain the above spectral changes by proposing an initial hydride abstraction from IV, forming the 1,3-ditellurolylium cation V, followed by a rapid rearrangement of V to a 1,2-ditellurolylium ion VII, as depicted in Scheme 2. The 1,2-

For R = H, by
1
H NMR

 $k_{283} = 1.38 \times 10^{-4} \text{ sec}^{-1}$
 $k_{298} = 2.97 \times 10^{-4} \text{ sec}^{-1}$
 $\Delta H^{\neq} = 8.00 \text{ kcal/mole}$
 $\Delta G_{298}^{\neq} = 22.3 \text{ kcal/mole}$
 $E = 8.56 \text{ kcal}$
 $\log A = 2.75$

Scheme 2

ditellurolylium cations were quite unstable; they rapidly deposited tellurium metal. The mechanism (Scheme 2) is reminiscent of a homoallyl-cyclopropylcarbinyl rearrangement. The activation parameters listed in Scheme 2 are consistent with a facile process involving significant ordering in the transition state. This ordering is probably due to a puckering in the ring, allowing the initial homoallyl-cyclopropylcarbinyl-like rearrangement to proceed. Apparently, the rate-determining step is the formation of intermediate VII, since alkyl and aryl substituents accelerate the rearrangement (we have not observed any 1,3-ditellurolylium

ions when $R \neq H$; only the 1,2-ditellurolylium ions were seen). The rearrangement appears to be regiospecific, since only cations with a terminal substituent were Finally, the ¹H NMR This is consistent with the proposed mechanism. coupling constants for the 1,2-ditellurolylium ions VIIa-d are similar to those of their 1,2-dithiolylium analogues (~5 Hz) (see Table 2). The 1H NMR multiplicities of VIIa-d are also similar to those of the sulfur analogues. 1c We are currently investigating methods for stabilizing cation V and studying its chemistry.

	R	δΗ _Α , a ppm	δΗ _B , ppm	Ŭ, Hz	
H _B Te BF ₄	Н	13.83	10.31	6.9	
	СН _З	13.40	10.20	6.6	
	CH ₃ (CH ₂) ₃	13.25	10.15	6.6	
	Ph	13.30	10.61	6.9	

aCD₂CN.

We acknowledge the assistance of J. M. Hewitt for obtaining the activation parameters for the rearrangement of V to VII. We also appreciate helpful discussions with Drs. F. R. Green III and L. H. Latimer.

REFERENCES AND NOTES

- Reviews: (a) N. Lozac'h and M. Stavaux in "Advances in Heterocyclic Chemistry," Vol. 27, p. 151, ed. by A. R. Katritzky and A. J. Boulton, Academic Press, New York, 1980; (b) R. D. Hamilton and E. Campaigne in "Chemistry of Heterocyclic Compounds," Vol. 30, p. 171, ed. by E. C. Taylor and A. Weissburger, John Wiley, New York, 1977; (c) H. Prinzbach and E. Futterer in "Advances in Heterocyclic Chemistry," Vol. 7, p. 39, ed. by A. R. Katritzky and A. J. Boulton, Academic Press, New York, 1966.
- M. Narita and C. U. Pittman, <u>Synthesis</u>, 489 (1976). E. M. Engler and V. V. Patel, <u>Tetrahedron Lett.</u>, 1259 (1975).
- 4.
- S. L. Bender, N. F. Haley, and H. R. Luss, <u>Tetrahedron Lett.</u>, 1495 (1981). This procedure is similar to Brandsma's preparation of chloromethylthioalkynes but modified specifically for tellurium chemistry (i.e., Na₂Te gave no IV); R. S. Sukhai, W. Verboom, J. Meijer, M.J.M. Schoufs, and L. Bfandsma, Recl. Trav. Chim. Pays-Bas, 100(1), 10 (1981).
 The correct chloromethyltellurole ether can be differentiated from the ditel-
- lurole ether by measuring the ratio of NMR peaks between the singlet methylene and its tellurium split doublet.
- M. R. Detty, B. J. Murray, and M. D. Seidler, <u>J. Org. Chem.</u>, submitted. In all three substituted 1,3-ditelluroles only the 1,2-ditellurolylium cation was observed (Table 2); at 0°C, rearrangement of the corresponding 1,3-ditellurolylium cation had already occurred.

(Received in USA 18 December 1981)